
Decimate Documentation
Release 0.5

Samuel KORTAS

Feb 19, 2018

User Documentation

1 What is Decimate? 3
1.1 Features . 3
1.2 Automated restart in case of failure . 4
1.3 Fully user configurable environment . 4

2 Using Decimate 5
2.1 Supported Workflows . 5
2.2 Submitting a job . 5

2.2.1 options . 5
2.2.2 single job . 5
2.2.3 dependent job . 6
2.2.4 other kind of jobs . 6

2.3 checking the status . 6
2.4 Displaying the log file . 7
2.5 Cancelling the whole workflow . 7

3 Examples of Workflows 9
3.1 Test job . 9
3.2 Nominal 2 job workflow . 9
3.3 parametric job workflow . 10

4 Parameters combination 11
4.1 array of values . 11
4.2 Combined parameter sweep . 12
4.3 Parameters depending on simple formulas . 12
4.4 More complex Python expressions . 13

5 Shell API 15
5.1 dbatch . 15

6 Installation 17
6.1 How to submit . 17

i

ii

Decimate Documentation, Release 0.5

User Documentation 1

Decimate Documentation, Release 0.5

2 User Documentation

CHAPTER 1

What is Decimate?

Developped by the KAUST Supercomputing Laboratory (KSL), Decimate is a SLURM extension written in Python
allowing the user to handle jobs per hundreds in an efficient and transparent way. In this context, the constraint limiting
the number of jobs per users is completely masked. The time consuming burden of managing thousands of jobs by
hand is also alleviated by making available to the user the concept of workflow gathering a set of jobs that he can
manipulate as a whole.

Decimate is released as an Open Source Software under BSD Licence. It is available at

1.1 Features

Decimate allows a user to:

• Submit any number of jobs regardless of any limitation set in the scheduling policy on the maximum number of
jobs authorized per user.

• Manage all the submitted jobs as a single workflow easing their submission, monitoring, deletion or reconfigu-
ration.

• Ease the definition, submission and management of jobs run on a large set of combinations of parameters.

• Benefit from a centralized log file, a unique point of capture of relevant information about the behavior of the
workflow. From Python or shell, at any time and from any jobs, the logging levels info, debug, console and mail
are available.

• Send fully-configurable mail messages detailing the current completion of the workflow at any step of its exe-
cution.

• Easily define a procedure (in shell or Python) to check for correctness of the results obtained at the end of
given step. Having access to the complete current status of the workflow, this procedure can make the decision
on-the-fly either to stop the whole workflow, to resubmit partially the failing components as is, or to modify it
dynamically.

3

Decimate Documentation, Release 0.5

1.2 Automated restart in case of failure

In case of failure of one part of the workflow, Decimate automatically detects the failure, signals it to the user and
launches the misbehaving part after having fixed the job dependency. By default if the same failure happens three
consecutive times, Decimate cancels the whole workfow removing all the depending jobs from the scheduling. In a
next version, Decimate will allow the automatic restarting of the workflow once the problem causing its failure has
been cured.

1.3 Fully user configurable environment

Decimate also allows the user to define his own mail alerts that can be sent at any point of the workflow.

Some customized checking functions can also be designed by the user. Their purpose is to validate if a step of the
workflow was succesful or not. It could involved checking for the presence of some result files, grepping some error
or success messages in them, computing ratio or checksum. . . These intermediate results can be easely transmitted to
Decimate validating or not the correctness of any step. They can also be forwarded by mail to the user where as the
workflow is executing.

4 Chapter 1. What is Decimate?

CHAPTER 2

Using Decimate

Via Decimate, four commands are added to the user environment: dbatch to submit workflows, dstat to monitor their
current status, dlog to tail the log information produced and dkill to cancel the execution of the workflow.

2.1 Supported Workflows

For Decimate, a workflow is a set of jobs submitted from a same directory. These jobs can depend on one another and
be job array of any size.

How job are named: job_name-attempt-array

2.2 Submitting a job

2.2.1 options

Decimate dbatch command accepts the same options as the SLURM sbatch command and extends it in two ways:

• it transparently submits the user job within a fauit-tolerant framework

• it adds new options to manage the workflow execution if a problem occurs

– --check=SCRIPT_FILE points to a user script (either in python or shell) to validate the correctness of
the job at the end of its execution

– --max-retry=MAX_RETRY setting number of time a step can fail and be restarted automatically before
failing the whole workflow (3 per default)

2.2.2 single job

Here is how to submit a simple job:

5

https://slurm.schedmd.com/sbatch.html

Decimate Documentation, Release 0.5

dbatch --job-name=job_1 my_job.sh

[MSG] submitting job job_1 (for 1) --> Job # job_1-0-1 <-depends-on None
[INFO] launch-0!0:submitting job job_1 [1] --> Job # job_1-0-1 <-depends-on None
Submitted batch job job_1-0-1
[1] --> Job # job_1-0-1 <-depends-on None

Notice how the command syntax is similar to sbatch command.

• In lines starting with [MSG], [INFO], or [DEBUG], Decimate gives us additional information about what is
going on.

• All the traces [INFO], or [DEBUG] also appears in the corresponding job output file as well as in Decimate
central log file dumped in <current_directory>/.decimate/LOGS/decimate.log [MSG] traces only appears at the
console or in the output file of the job.

• for Decimate, every job is considered as a job array. In this simple case, it considers an array of job made of
a single element 1-1. In the traces, the array indice shows in “(for 1)”, “submitting job job_1 [1]”, or “job
job_1-0-1”. (if needed check SLURM job array documentation for more information).

• Every job submitted via Decimate is part of a fault-tolerant environment. At the end of its execution, its correct-
ness is systematically checked thanks to a user defined function or by default thanks the return code of the job
given by SLURM. If the job is not considered as correct, (and if the return code of the user-defined function is
not ABORT), the job is automatically resubmitted for a first and a second attempt if needed. In the traces, the
attempt number shows as the second figure in the job denomination: “job job_1-0-1”.

2.2.3 dependent job

Here is how to submit a job dependending on a previous job:

dbatch --dependency=job_1 --job-name=job_2 my_job.sh
[INFO] launch-0!0:Workflow has already run in this directory, trying to continue it
[MSG] submitting job job_2 (for 1) --> Job # job_2-0-1 <-depends-on 218459
[INFO] launch-0!0:submitting job job_2 [1] --> Job # job_2-0-1 <-depends-on 218459
Submitted batch job job_2-0-1
[1] --> Job # job_2-0-1 <-depends-on 218459

It again matches sbatch original syntax with the subtility that via Decimate dependency can be expressed with respect
to a previous job name and not only to a previous job id as SLURM only allows it.

• It makes it more convenient to write automated script.

• At this submission time, Decimate checks if a previous submitted job has actually been submitted with this
particular name. If not, an error will be issued and the submission is canceled.

• Of course, dependency on a previous job id is also supported.

2.2.4 other kind of jobs

A comprehensive list of job examples can be found in Examples of Workflows.

2.3 checking the status

The current workflow status can be checked with dstat:

6 Chapter 2. Using Decimate

https://slurm.schedmd.com/job_array.html
http:workflows.html

Decimate Documentation, Release 0.5

dstat

When no job has been submitted from the current directory. dstat shows:

[MSG] No workflow has been submitted yet

When jobs submitted submitted the current directory are currently running . dstat shows:

[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 RUNNING SUCCESS: 0% FAILURE: 0% ->
→˓[]

And when a workflow is completed:

dstat
[MSG] CHECKING step : job_2-0 task 1
[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]

2.4 Displaying the log file

The current Decimate log file can be checked with dlog:

dlog

2.5 Cancelling the whole workflow

The current workflow can be completly killed with the command dkill:

dkill

If no job of the workflow is either running, queueing or waiting to be queued, dkill prints:

[INFO] No jobs are currently running or waiting... Nothing to kill then!

If any job is still waiting or running, dkill asks a confirmation to the user and cancels all jobs from the current workflow.

2.4. Displaying the log file 7

Decimate Documentation, Release 0.5

8 Chapter 2. Using Decimate

CHAPTER 3

Examples of Workflows

3.1 Test job

Let my_job.sh be the following example job:

#!/bin/bash
#SBATCH -n 1
#SBATCH -t 0:05:00

echo job running on...
hostname
sleep 10

echo job DONE

If not done yet, we first load the Decimate module:

module load decimate

3.2 Nominal 2 job workflow

Then submission of jobs follows the same syntax than with the sbatch command:

dbatch --job-name=job_1 my_job.sh

[MSG] submitting job job_1 (for 1) --> Job # job_1-0-1 <-depends-on None
[INFO] launch-0!0:submitting job job_1 [1] --> Job # job_1-0-1 <-depends-on None
Submitted batch job job_1-0-1
[1] --> Job # job_1-0-1 <-depends-on None

9

Decimate Documentation, Release 0.5

dbatch --dependency=job_1 --job-name=job_2 my_job.sh
[INFO] launch-0!0:Workflow has already run in this directory, trying to continue it
[MSG] submitting job job_2 (for 1) --> Job # job_2-0-1 <-depends-on 218459
[INFO] launch-0!0:submitting job job_2 [1] --> Job # job_2-0-1 <-depends-on 218459
Submitted batch job job_2-0-1
[1] --> Job # job_2-0-1 <-depends-on 218459

dstat

[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 RUNNING SUCCESS: 0% FAILURE: 0% ->
→˓[]

dstat
[MSG] CHECKING step : job_2-0 task 1
[INFO] launch-0!0:no active job in the queue, changing all WAITING in ABORTED???
[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]

3.3 parametric job workflow

Then submission of parametric jobs follows the same syntax than with the sbatch command adding a reference to a
text file describing the set of parameters to be tested:

dbatch --job-name=job_1 -P parameters.txt my_job.sh

How to build the file parameters.txt is described at Parameters combination.

10 Chapter 3. Examples of Workflows

http:parameters.html

CHAPTER 4

Parameters combination

Then submission of parametric jobs requires to gather in a parameter file all the combinations of parameters that one
wants to run a job against. This list of combination can be described as an explicit array of values of programatically
via a Python or shell script or using simple directives.

While the execution of parametric workflows is described here, here are detailed four ways of defining parameters. .

4.1 array of values

The simplest way to describe the set of parameter combinations that needs to be tested consists in listing them exten-
sively as an array of values. The first row of this array is the name of each parameters and each row is one possible
combination.

Here is a parameters file listing all possible combinations for 3 parameters (i,j,k), each of them taking the value 1 or 2.

array-like description of parameter combinations

i j k

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

Notice that:

• spaces, void lines are ignored.

• every thing following a # is considered as a comment and ignored

11

http:workflows.html#parametric-job-workflow

Decimate Documentation, Release 0.5

4.2 Combined parameter sweep

In case of combinations that sweeps all possible set of values based on the domain definition of each variable, a more
compact declarative syntax is also available. The same set of parameters can be generated with the following file:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

Every line starting with #DECIM is parsed as a special command.

4.3 Parameters depending on simple formulas

Some parameters can also be computed from others using simple arithmetic formulas. Here is a way to declare them:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

array-like description of parameter combinations

i j k p

1 1 1 1
1 1 2 2
1 2 1 2
1 2 2 4
2 1 1 2
2 1 2 4
2 2 1 4
2 2 2 8

an additional parameter can also be described by a list of values:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

#DECIM t = [1,2,4,8,16,32,64,128,256]

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

12 Chapter 4. Parameters combination

Decimate Documentation, Release 0.5

array-like description of parameter combinations

i j k p t

1 1 1 1 1
1 1 2 2 2
1 2 1 2 4
1 2 2 4 8
2 1 1 2 16
2 1 2 4 32
2 2 1 4 64
2 2 2 8 128

For each parameter added via a list of values, the conformance with the existing number of already possible combina-
tions is checked. For example, the following parameter file. . .

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

#DECIM t = [1,2,4,8,16,32,64,128,256]

. . . produces the error:

[ERROR] parameters number mistmatch for expression
[ERROR] t = [1,2,4,8,16,32,64,128,256]
[ERROR] --> expected 8 and got 9 parameters...

4.4 More complex Python expressions

For a high number of parameters, a portion of code written in Python can also be embedded after a #DECIM PYTHON
directive till the end of the file.

pythonic parameter example file

#DECIM COMBINE nodes = [2,4,8]
#DECIM COMBINE ntasks_per_node = [16,32]

#DECIM k = range(1,7)

#DECIM PYTHON

import math

ntasks = nodes*ntasks_per_node
nthreads = ntasks * 2

NPROC = 2; #Number of processors

t = int(2**(k))
T = 15

4.4. More complex Python expressions 13

Decimate Documentation, Release 0.5

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

array-like description of parameter combinations

nodes ntasks_per_node k ntasks nthreads t NPROC T
2 32 1 64 128 2 2 15
2 64 2 128 256 4 2 15
4 32 3 128 256 8 2 15
4 64 4 256 512 16 2 15
8 32 5 256 512 32 2 15
8 64 6 512 1024 64 2 15

A python section is always evaluated at the end. Each new variables set at the end of the evaluation is added as a new
parameter computed against each of the already built combinations. The conformance to the number of combinations
already set is also checked if the variable is a set of values.

14 Chapter 4. Parameters combination

CHAPTER 5

Shell API

5.1 dbatch

Usage: dbatch [OPTIONS. . .] job_script [args. . .]

Help:

-h, --help show all possible options for dbatch

-H, --decimate-help show hidden option to manage Decimate engine

Workflow management:

--check=SCRIPT_FILE python or shell to check if results are ok

--max-retry=MAX_RETRY number of time a step can fail and be restarted automatically before
failing the whole workflow (3 per default)

Burst Buffer:

-bbz, --use-burst-buffer-size use a non persistent burst buffer space

-xz, --burst-buffer-size=BURST_BUFFER_SIZE set Burst Buffer space size

-bbs, --use-burst-buffer-space use a persistent burst buffer space

-xs, --burst-buffer-space=BURST_BUFFER_SPACE_name sets Burst Buffer name

environment variables:

DPARAM options forwarded to Decimate

script directives

#DECIM SHOW_PARAMETERS #DECIM PROCESS_TEMPLATE_FILES

15

Decimate Documentation, Release 0.5

16 Chapter 5. Shell API

CHAPTER 6

Installation

6.1 How to submit

17

	What is Decimate?
	Features
	Automated restart in case of failure
	Fully user configurable environment

	Using Decimate
	Supported Workflows
	Submitting a job
	options
	single job
	dependent job
	other kind of jobs

	checking the status
	Displaying the log file
	Cancelling the whole workflow

	Examples of Workflows
	Test job
	Nominal 2 job workflow
	parametric job workflow

	Parameters combination
	array of values
	Combined parameter sweep
	Parameters depending on simple formulas
	More complex Python expressions

	Shell API
	dbatch

	Installation
	How to submit

